Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.876
Filtrar
1.
Dent Mater J ; 43(2): 294-302, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38432949

RESUMO

This study aimed to clarify the effects of multiple firings on the translucency, crystal structure, and mechanical strength of highly translucent zirconia. Four types of highly translucent zirconia (LAVA Esthetic, LAVA Plus, KATANA Zirconia STML, and KATANA Zirconia HTML) were fired three times at three different temperatures, and the translucency, crystal structure, and flexural strength were evaluated before and after firing. The translucency was statistically compared using repeated-measures analysis of variance; the zirconia phase composition was assessed using X-ray diffraction followed by Rietveld analysis; and the biaxial flexural strength was assessed using Weibull analysis. The translucency of LAVA Esthetic and KATANA Zirconia HTML decreased significantly after firing, and the crystal composition of LAVA Plus and KATANA Zirconia HTML changed after multiple firings, whereas multiple firings did not affect the biaxial flexural strength of any samples. Thus, multiple firings may affect the optical properties of highly translucent zirconia.


Assuntos
Materiais Dentários , Resistência à Flexão , Materiais Dentários/química , Teste de Materiais , Zircônio/química , Cerâmica/química , Propriedades de Superfície
2.
Dent Mater ; 40(4): 756-763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429216

RESUMO

OBJECTIVE: To evaluate the influence of printing orientation on flexural strength (σf) and elastic modulus (E) of different 3D printing dental restorative resins. METHODS: Bar-shaped specimens (n = 20) were fabricated from two SLA-printed resins (FT- Formlabs Temporary, and FP- Formlabs Permanent) and two DLP-printed resins (DFT- Detax Freeprint Temp, and GCT- GC Temporary) using two building orientations (0º and 90º). The 3D-printed structures were aged (14 d) before submitted to three-point bending in 37ºC distilled water at a crosshead speed of 1.0 ± 0.3 mm/min until fracture to calculate the σf and the E values. The fractured surfaces were evaluated using stereomicroscopy and scanning electron microscopy (SEM) following fractography principles. Data were statistically analyzed using two-way ANOVA and Tukey post-hoc (α = 0.001). RESULTS: FP and FT showed significantly higher E values than DFT and GCT, irrespectively of printing orientation (p < 0.001). There was no statistical difference between the building orientations (0º and 90º) for the mean σf and E values for the resin materials evaluated. Fractographic characteristics were similar for the surface fracture from all the materials evaluated, showing typical brittle fracture behavior. SIGNIFICANCE: Printing orientation did not influence of flexural strength and elastic modulus values for the 3D-printed resin structures evaluated. Surface topography was mostly governed by the 3D printer type.


Assuntos
Resinas Compostas , Materiais Dentários , Materiais Dentários/química , Resinas Compostas/química , Teste de Materiais , Resistência à Flexão , Impressão Tridimensional , Propriedades de Superfície
3.
BMC Oral Health ; 24(1): 295, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431585

RESUMO

PURPOSE: This research aimed to investigate fracture resistance of endodontically treated maxillary premolars restored using preheated thermo-viscous and fiber-reinforced bulk fill resin composite, in vitro. METHODOLOGY: Sixty sound human maxillary premolars were selected and divided randomly into 6 groups of ten teeth each (n = 10). Group 1; is the positive control with sound unprepared teeth (P), Group 2; is the negative control in which Mesio-occluso-distal (MOD) cavities were left unrestored (N), Group 3; includes the teeth restored by incremental packing with conventional nanohybrid composite (ChP), Group 4; includes teeth restored with short fiber reinforced bulk fill composite (EF), Group 5; includes teeth restored with preheated thermo-viscous bulk fill composite (VB), and Group 6; includes teeth restored using packable bulk fill composite (XF) Tested restorative materials were bonded with a universal adhesive in self-etch mode. Teeth were kept in distilled water for 24 h at 37 °C proceeded by thermocycling (5- 55 °C, 1200×). Teeth were then exposed to compressive load till fracture at a crosshead speed of 1 mm/min. One-way ANOVA followed by Tukey post-hoc test was implemented to compare between more than two groups in non-related samples. The significance level was established at α = 0.05 for both tests. RESULTS: Intact teeth significantly recorded the highest fracture resistance values among all groups. A significant difference was recorded among all the tested groups, with the EF recording the highest values, followed by the VB group then the XF group and ChP that recorded the lowest data. Negative control premolars significantly recorded the lowest fracture. CONCLUSIONS: After thermocycling, endodontically treated maxillary premolars restored with pre-heated thermos-viscous composite did not exhibit an increase in fracture resistance. Notably, our findings indicate that short fiber-reinforced composite demonstrated significantly higher fracture resistance compared to other types of composites assessed in this study. This suggests the potential superiority of short fiber-reinforced composite in enhancing the overall structural integrity of endodontically treated teeth subjected to occlusal forces.


Assuntos
Fraturas dos Dentes , Dente não Vital , Humanos , Restauração Dentária Permanente , Dente Pré-Molar , Teste de Materiais , Fraturas dos Dentes/prevenção & controle , Materiais Dentários/química , Resinas Compostas/química , Dente não Vital/terapia , Análise do Estresse Dentário
4.
Braz Dent J ; 35: e245728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38537023

RESUMO

This study analyzed the physical-chemical properties of bioactive ionomer materials. Cention N bioactive materials were evaluated chemically activated (CN) and light-cured (CN-LC), Equia Forte Fill (EQUI); conventional resin composite Filtek Z350 XT (Z350); resin glass ionomer cement Riva light Cure (RIVA) and flowable resin composite Filtek Bulk Fill Flow (BULK-F) were evaluated. Sixty specimens (n=10) were prepared for sorption (SR), solubility (SL), flexural strength (FS), shrinkage stress (SS), conversion degree (CD), microhardness (MI), and surface roughness (SR) tests. Non-cured and light-cured materials were assessed on FTIR. 30 human molar teeth were used in the bond strength test (BS). Data were subjected to ANOVA and post-hoc Tukey's test (5% of significance). EQUI showed more sorption in SR and no statistical difference from RIVA and CN-LC. CN group showed more solubility and EQUI presented less (p<0.05). BULK-F showed higher FS (MPa), without differences from CN and Z350, whereas EQUI presented the lowest FS not differing from RIVA. BULK-F and CN-LC showed more shrinkage stress differing from EQUI. CN-LC and CN showed higher CD differing from the other which showed no differences (p>0.05) between them. EQUI showed the highest hardness (p<0.05) in MI. There were no differences (p>0.05) in SR (µm). Z350 and BULK-F presented higher BS, whereas CN-LC showed the lowest, although not differing from EQUI and RIVA. Equia Forte's solubility and microhardness make it a good alternative as a restorative material. Cention N degree of conversion and flexural strength making it an esthetic option to amalgam.


Assuntos
Resinas Compostas , Cimentos de Ionômeros de Vidro , Humanos , Teste de Materiais , Resinas Compostas/química , Materiais Dentários/química , Resistência à Flexão , Dureza
5.
Dent Mater J ; 43(2): 263-268, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38382941

RESUMO

In this study, we investigated the effects of surface treatment on the fracture strength of porcelain-veneered zirconia. Highly translucent 4 mol% yttria-stabilized zirconia disks (KATANA HT, Kuraray Noritake Dental) were divided into three surface-treatment groups: 1)as-sintered, 2) alumina sandblasted, and 3) ground. Crystallographic and surface-roughness analyses were conducted for each group. Veneering ceramics (Cerabien ZR, Kuraray Noritake Dental) were applied to the zirconia surfaces. The fracture strengths of the porcelain-veneered zirconia disks were measured using biaxial flexural-strength tests. Crystallographic analysis revealed that grinding and sandblasting increased the fractions of the monoclinic and rhombohedral zirconia phases. The ground specimens had a higher surface roughness than the sandblasted specimens. Weibull analysis showed no significant differences in biaxial flexural strength among the three groups. The results suggest that these surface treatments do not affect the fracture strength of porcelain-veneered zirconia.


Assuntos
Porcelana Dentária , Resistência à Flexão , Porcelana Dentária/química , Teste de Materiais , Facetas Dentárias , Propriedades de Superfície , Análise do Estresse Dentário , Materiais Dentários/química , Cerâmica/química , Zircônio/química , Ítrio/química
6.
Dent Mater J ; 43(2): 216-226, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38417860

RESUMO

This study aimed to investigate the effects of sandblasting on the physical properties and bond strength of two types of translucent zirconia: niobium-oxide-containing yttria-stabilized tetragonal zirconia polycrystals ((Y, Nb)-TZP) and 5 mol% yttria-partially stabilized zirconia (5Y-PSZ). Fully sintered disc specimens were either sandblasted with 125 µm alumina particles or left as-sintered. Surface roughness, crystal phase compositions, and surface morphology were explored. Biaxial flexural strength (n=10) and shear bond strength (SBS) (n=12) were evaluated, including thermocycling conditions. Results indicated a decrease in flexural strength of 5Y-PSZ from 601 to 303 MPa upon sandblasting, while (Y, Nb)-TZP improved from 458 to 544 MPa. Both materials significantly increased SBS after sandblasting (p<0.001). After thermocycling, (Y, Nb)-TZP maintained superior SBS (14.3 MPa) compared to 5Y-PSZ (11.3 MPa) (p<0.001). The study concludes that (Y, Nb)-TZP is preferable for sandblasting applications, particularly for achieving durable bonding without compromising flexural strength.


Assuntos
Materiais Dentários , Nióbio , Óxidos , Materiais Dentários/química , Teste de Materiais , Propriedades de Superfície , Zircônio/química , Ítrio/química , Óxido de Alumínio , Resistência ao Cisalhamento
7.
Dent Mater ; 40(4): 581-592, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368136

RESUMO

OBJECTIVE: The purpose was to evaluate the degree of conversion (DC), internal adaptation (IA) and closed porosity (CP) of short-fiber reinforced resin composites (SFRC) associated with layered or bulk restorative procedures in deep MOD cavities. METHODS: Eighty third molars with standardized MOD cavities (5-mm-depth, 2.5-mm-width) were randomly divided into four groups and restored as follows: 1) bulk SFRC; 2) layered SFRC; 3) flowable bulk-fill resin-based composites (RBC); 4) layered conventional RBC. After one-month wet storage the samples were subjected to micro-computed tomography measurements and scanning electron microscopy to assess the IA and CP. Micro-Raman spectroscopy was used to determine the DC in different depths. Data were subjected to ANOVA and Tukey's post-hoc test, multivariate analysis and partial eta-squared statistics (p < 0.05). Pearson correlation coefficient was determined to assess the relationship among the parameters of interest. RESULTS: Gap/total interface volume ratio ranged between 0.22-0.47%. RBCs applied in bulk revealed significantly lower gap volume (p < 0.001) and CP (p < 0.05). Each group showed complete detachment on the pulpal and partial on the lateral walls, except for group3. While the highest DC% was achieved by the conventional RBC (87.2%), followed by the flowable bulk-fill (81.2%), SFRC provided the best bottom to top DC ratio (bulk: 96.4%, layered: 98.7%). The effect of factors studied (RBC type, filling technique) on IA and DC was significant (p < 0.001). SIGNIFICANCE: Bulk placement of RBCs exhibited lower interfacial gap volume and achieved satisfactory DC without significant correlation between these parameters. Incremental insertion of SFRC had no advantage over bulk placement in terms of IA and DC.


Assuntos
Resinas Compostas , Materiais Dentários , Materiais Dentários/química , Microtomografia por Raio-X , Teste de Materiais , Polimerização , Propriedades de Superfície , Resinas Compostas/química
8.
Dent Mater ; 40(4): 664-673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378371

RESUMO

OBJECTIVES: To investigate the impacts of speed and high-speed sintering on the densification, microstructure, phase composition, translucency, and flexural strength of yttria-stabilized zirconia (YSZ). METHODS: A total of 162 disc-shaped specimens (n = 18) were cold-isostatically pressed from 3YSZ (Zpex), 4YSZ (Zpex 4), and 5YSZ (Zpex Smile) powders (Tosoh Corporation) and sintered according to the following protocols: conventional (control, ∼12 h), speed (∼28 min for 3YSZ; ∼60 min for 4YSZ and 5YSZ), and high-speed (∼18 min) sintering. Dimensions of zirconia specimens after sintering and polishing (1-µm diamond grit finish) were Ø13.75 × 1 mm. Density, microstructure, phase content, translucency parameter, and biaxial flexural strength were evaluated using Archimedes', SEM, XRD, spectrophotometric, and piston-on-3-ball methods, respectively. Data were analyzed with either one-way ANOVA and Tukey's test or Kruskal-Wallis with Dunn's test (α = 0.05). RESULTS: For all YSZ compositions, conventional sintering yielded the highest density followed by speed then high-speed sintering. All sintering protocols resulted in similar strength values; however, speed and high-speed sintering protocols afforded significantly lower translucency relative to conventional sintering. XRD analysis revealed similar spectra for YSZs sintered by various protocols. The speed sintered specimens had the smallest grain size whereas the high-speed sintered 5YSZ possessed the largest grain size among all groups. SEM examination of all YSZ compositions revealed that the average pore size was an order of magnitude smaller than the average grain size. SIGNIFICANCE: Speed and high-speed sintering of YSZs yield similar strength but diminished density and translucency relative to their conventionally sintered counterparts.


Assuntos
Cerâmica , Materiais Dentários , Materiais Dentários/química , Cerâmica/química , Teste de Materiais , Propriedades de Superfície , Zircônio/química , Ítrio/química
9.
Dent Mater ; 40(3): 520-526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212175

RESUMO

OBJECTIVE: The aim of this study was to evaluate the remineralizing properties of ion-releasing restorative materials on pH cycling-induced carious dentin. METHODS: Fifty sound molars were freshly extracted. The occlusal surfaces were abraded using water-cooled sandpaper (800 grit). The residual crowns were embedded in self-cured acrylic resin with the flat dentin surface exposed. A mesio-distal trench was created using a calibrated 0.5 mm deep occlusal reduction burr, and artificial dentin caries were generated by pH cycling. Then, teeth were randomly assigned to five groups according to the ion-releasing material used. For each sample, micro-CT acquisitions were performed at various intervals. Remineralization was assessed by mean gray value (MGV) measurements after registration and segmentation of the region of interest with 3D Slicer software. One-way repeated-measures ANOVA followed by Tukey's post hoc test was used to investigate the difference in MGVs among the various groups. RESULTS: Only Cention Forte showed significantly increased MGVs after 4 weeks compared to demineralized dentin. MGVs were higher, but not significantly, after placement of the restorative materials, including in the resin composite control group. These results can be explained by the radiopacity of the materials. SIGNIFICANCE: Cention Forte, the material with the highest radiopacity, showed a significant increase in the MGVs of artificially carious dentin after 4 weeks. However, the study of dentin remineralization by micro-CT could be impacted by the radiopacity of the restorative materials used. The relevance of this examination for the study of dentinal remineralization should be investigated.


Assuntos
Cárie Dentária , Cimentos de Ionômeros de Vidro , Humanos , Cimentos de Ionômeros de Vidro/química , Microtomografia por Raio-X , Materiais Dentários/química , Cárie Dentária/terapia , Resinas Compostas/química , Dentina/química , Teste de Materiais
10.
BMC Oral Health ; 24(1): 130, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273289

RESUMO

BACKGROUND: The aim of the present study was to investigate the micro-shear bond strength (µSBS) of various restorative materials applied on two different fast-setting calcium silicate-based materials and to evaluate the effect of restoration time on µSBS. METHODS: A total of 180 acrylic blocks with a cavity in the center were randomly divided into 2 main groups according to the capping material to be used (Biodentine or RetroMTA). The specimens were also randomly divided into 3 groups according to the restoration time (3 min, 12 min, 24 h). After the specified waiting periods, glass hybrid material (EQUIA Forte HT), resin composite (Filtek Z550) and light-cured calcium silicate material (Theracal LC) were placed on the specimens with tygon tubes. The specimens were kept for 24 h and then subjected to µSBS test. Statistical analysis was performed by 3-way ANOVA followed by Tukey test for pairwise comparisons (α = 0.05). RESULTS: There is a statistically significant difference (p < 0.05) between the µSBS values obtained by applying resin composite on RetroMTA after different setting times (24 h > 12 min > 3 min). The µSBS obtained for the Biodentine-resin composite at the end of the 3 min setting time is significantly lower (p < 0.05) than the µSBS values at 12 min and 24 h. For both calcium silicate cements, at the end of all time periods, the µSBS obtained when resin composite was applied at the end was higher than the other materials (p < 0.05). CONCLUSIONS: For Biodentine-resin composite bonding, the manufacturer's recommendation of 12 min can be considered an appropriate time, whereas for RetroMTA-resin composite bonding, the µSBS increased as the waiting time increased. Regardless of the waiting time, it is recommended to prefer direct composite resin restoration over Biodentine and RetroMTA.


Assuntos
Compostos de Alumínio , Compostos de Cálcio , Colagem Dentária , Cimentos de Ionômeros de Vidro , Óxidos , Silicatos , Humanos , Cimentos de Ionômeros de Vidro/química , Materiais Dentários/química , Resinas Compostas/uso terapêutico , Resinas Compostas/química , Teste de Materiais , Resistência ao Cisalhamento , Cimentos de Resina/química , Combinação de Medicamentos
11.
J Dent ; 142: 104866, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281620

RESUMO

OBJECTIVES: Fatigue and low-temperature degradation (LTD) are the main factors contributing to zirconia restoration failure. This study evaluated the effect of LTD on the fatigue performance of the novel "strength & shade-gradient" multilayered zirconia restorations. METHODS: Discs (15 mm × 1.2 mm) of each yttria content layer from a newly developed strength-gradient multilayered zirconia were fabricated and under accelerated aging in an autoclave at 134℃ for 0 h, 32 h, and 64 h. Then, the phase transformation, microstructure, and mechanical properties after LTD were assessed. In addition, the crown samples, including the multi-Zir, 3Y-Zir, and 5Y-Zir were fabricated, and their monotonic and fatigue load before and after LTD, percentage of fatigue degradation (Sd) and the fracture morphology were investigated. Statistical analyses were performed using paired samples t-test (α' = α/3 = 0.017), one-way ANOVA and Weibull analysis. RESULTS: After LTD, the phase transformation, surface roughness, depth of transformed zone, and residual stress were increased and inversely associated with the yttria content. The indentation elastic modulus and hardness after LTD decreased; however, there was no significant difference between the different yttria content layers. The monotonic and fatigue load of multi-Zir restorations decreased, but their Weibull modulus increased, and Sd decreased, similar to 3Y-Zir. The crack origin was associated with the cervical region. CONCLUSION: These results show that although LTD reduces the absolute fatigue strength of strength-gradient multilayered zirconia restorations, it also reduces the effect of cyclic fatigue itself on the strength of zirconia (relative to monotonic strength), which might be due to the increase of residual stress. CLINICAL SIGNIFICANCE: The novel "strength & shade-gradient" multilayered zirconia restorations show a promising performance during in vitro LTD and fatigue test and their reliability to some extent is comparable to 3Y-Zir. Yet, further in vivo longitudinal studies are warranted to confirm their precise performance.


Assuntos
Materiais Dentários , Ítrio , Materiais Dentários/química , Teste de Materiais , Temperatura , Reprodutibilidade dos Testes , Ítrio/química , Zircônio/química , Propriedades de Superfície , Cerâmica
12.
BMC Oral Health ; 24(1): 140, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281948

RESUMO

BACKGROUND: A shear bond strength between the biomaterial and restorative material is crucial for minimizing bacterial microleakage and ensuring a favorable long-term prognosis for vital pulp therapy. This study aimed to conduct a comparative evaluation of the shear bond strength between calcium silicate-based biomaterials utilized in vital pulp treatment and various glass ionomer cement materials, both with and without the application of adhesive agents. METHODS: A total of 270 acrylic blocks, each featuring cavities measuring 4 mm in diameter and 2 mm in depth, were prepared. Calcium silicate-containing biomaterials (ProRoot MTA, Medcem Pure Portland Cement, and Medcem MTA), following manufacturers' instructions, were placed within the voids in the acrylic blocks and allowed to set for the recommended durations. The biomaterial samples were randomly categorized into three groups based on the restorative material to be applied: conventional glass ionomer cement, resin-modified glass ionomer cement, and bioactive restorative material. Using cylindrical molds with a diameter of 3.2 mm and a height of 3 mm, restorative materials were applied to the biomaterials in two different methods, contingent on whether adhesive was administered. After all samples were incubated in an oven at 37 °C for 24 h, shear bond strength values were measured utilizing a universal testing device. The obtained data were statistically evaluated using ANOVA and post-hoc Tukey tests. RESULTS: The highest shear bond strength value was noted in the Medcem MTA + ACTIVA bioactive restorative material group with adhesive application, while the lowest shear bond strength value was observed in the ProRoot MTA White + Equia Forte HT Fil group without adhesive application (P < 0.05). CONCLUSION: Activa Bioactive Restorative may be considered a suitable restorative material in combination with calcium silicate-based biomaterials for vital pulp treatment. The application of adhesives to calcium silicate-based biomaterials can effectively address the technical limitations.


Assuntos
Resinas Acrílicas , Compostos de Cálcio , Colagem Dentária , Silicatos , Dióxido de Silício , Humanos , Colagem Dentária/métodos , Resinas Compostas/química , Cimentos de Ionômeros de Vidro/uso terapêutico , Cimentos de Ionômeros de Vidro/química , Materiais Dentários/química , Materiais Biocompatíveis , Teste de Materiais , Resistência ao Cisalhamento , Cimentos de Resina/química
13.
J Appl Oral Sci ; 32: e20230219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38232277

RESUMO

OBJECTIVE: In this study, a comparative evaluation of the physicochemical properties of Cention N and other direct restorative materials was performed. Three restorative materials-a resin-modified glass ionomer (Fuji II LC), an alkasite-based resinous material (Cention N), and a resin composite (Tetric N Ceram)-were characterized in terms of degree of conversion, Knoop hardness number (KHN) ratio, flexural strength, elastic modulus, water sorption, water solubility, microshear bond strength to dentin, immediate microleakage, and radiopacity. METHODOLOGY: The microshear bond strength to dentin and microleakage of Cention N were evaluated with and without the application of an adhesive system (Tetric N Bond Universal). A one-way ANOVA test was used to analyze the data in terms of degree of conversion, KHN ratio, water sorption, water solubility, microshear bond strength to dentin, and radiopacity. A two-way ANOVA test (carried out considering the material type and ethanol aging as factors) was used to analyze the data in terms of flexural strength and elastic modulus. The Kruskal-Wallis test was used to statistically analyze the data on microleakage. A significance level of α=0.05 was used for all tests. RESULTS: Fuji II LC was found to have the highest degree of conversion, water sorption, and microleakage, as well as the lowest flexural strength. Cention N had the highest solubility; when used with an adhesive system, it achieved bond strength and microleakage similar to those of the Tetric N Ceram composite. Tetric N Ceram had the highest degree of conversion, KHN ratio, and radiopacity. Conclusion: The properties of Cention N validate its efficacy as an alternative direct restorative material when used in conjunction with an adhesive system.


Assuntos
Resinas Compostas , Restauração Dentária Permanente , Resinas Compostas/química , Materiais Dentários/química , Cimentos de Ionômeros de Vidro/química , Água , Teste de Materiais
14.
J Prosthodont Res ; 68(1): 147-155, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37100616

RESUMO

Purpose With an increase in patients' aesthetic demands and advancements in dental technologies, tooth-colored materials have grown in popularity. This study aimed to statistically analyze the scientific output of zirconia.Methods Articles published between 1980 and 2021 were downloaded from the Web of Science database and analyzed using various statistical/bibliometric methods. Correlations were evaluated using the Spearman's coefficient. Time-series forecasting was used to predict the number of articles in the coming years.Results Of the 18773 recordings, 16703 (88.9%) were articles. China contributed the most to the literature (n=3345, 20%). The Chinese Academy of Sciences was the most active institution (n=666). Furthermore, Ceramics International was the journal that published the most articles (N=611). The Journal of Catalysis was the journal with the highest average number of citations per article (average number of citations, 81.4). A high level of significant correlation was found between the number of articles produced by different countries on zirconia and gross domestic product (r=0.742, P<0.001).Conclusions It is expected that zirconia research will continue to increase parallel with the increase in aesthetic expectations. Recent trends include dental implants, resin cement, surface roughness, shear bond strength, monolithic zirconia, osseointegration, flexural strength, aging, geochemistry, zircon U-Pb dating, detrital zircon, adhesion, computer-aided design-computer-aided manufacturing, bond strength, adsorption, titanium, spark plasma sintering, corrosion, SEM, zirconium dioxide, surface modification, XRD, finite-element analysis, and yttria-stabilized zirconia. Clinicians and scientists interested in zirconia can refer to this comprehensive article as a useful resource for the relevant global and multidisciplinary outcomes.


Assuntos
Colagem Dentária , Silicatos , Humanos , Propriedades de Superfície , Teste de Materiais , Materiais Dentários/química , Zircônio/química , Cerâmica/química , Cimentos de Resina/química , Resistência ao Cisalhamento
15.
Eur J Oral Sci ; 132(1): e12959, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864371

RESUMO

The present study aimed to compare the microstructure, physical, and mechanical properties of three commercially available dental polychromatic multilayer zirconia materials of uniform composition: Dima Mill Zirconia ML, VITA YZ/ST Multicolor, and VITA YZ/XT Multicolor (with 3, 4, and 5 mol% Y2 O3 , respectively); thus, the influence of Y2 O3 content on the above properties of the produced materials was experimentally studied. Homogeneous zirconia ceramics with a dense micro- and nanostructure, without pores or defects, were produced after milling the blocks and sintering, which resulted in yttrium-stabilized tetragonal and cubic zirconia. Statistical analysis of the results of measurable magnitudes was performed by the one-way ANOVA test. The increase of Y2 O3 content (from 3 to 5 mol%) favored larger grain and crystallite sizes and a decrease of the values of the mechanical properties; yet, the differences were statistically insignificant. Clinically, these differences are expected to have no impact on their function in the oral cavity, both in terms of their fracture propensity and the damage that can be caused to the opposing teeth. Accordingly, the experimental results qualify the polychromic multilayer zirconia ceramics of uniform composition fabricated by milling technology for use in dental restorations.


Assuntos
Cerâmica , Materiais Dentários , Materiais Dentários/química , Teste de Materiais , Cerâmica/química , Zircônio/química , Propriedades de Superfície
16.
Dent Mater ; 40(1): 139-150, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951750

RESUMO

OBJECTIVES: Laser surface micropatterning of dental-grade zirconia (3Y-TZP) was explored with the objective of providing defined linear patterns capable of guiding bone-cell response. METHODS: A nanosecond (ns-) laser was employed to fabricate microgrooves on the surface of 3Y-TZP discs, yielding three different groove periodicities (i.e., 30, 50 and 100 µm). The resulting topography and surface damage were characterized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). X-Ray diffraction (XRD) and Raman spectroscopy techniques were employed to assess the hydrothermal degradation resistance of the modified topographies. Preliminary biological studies were conducted to evaluate adhesion (6 h) of human mesenchymal stem cells (hMSC) to the patterns in terms of cell number and morphology. Finally, Staphylococcus aureus adhesion (4 h) to the microgrooves was investigated. RESULTS: The surface analysis showed grooves of approximately 1.8 µm height that exhibited surface damage in the form of pile-up at the edge of the microgrooves, microcracks and cavities. Accelerated aging tests revealed a slight decrease of the hydrothermal degradation resistance after laser patterning, and the Raman mapping showed the presence of monoclinic phase heterogeneously distributed along the patterned surfaces. An increase of the hMSC area was identified on all the microgrooved surfaces, although only the 50 µm periodicity, which is closer to the cell size, significantly favored cell elongation and alignment along the grooves. A decrease in Staphylococcus aureus adhesion was observed on the investigated micropatterns. SIGNIFICANCE: The study suggests that linear microgrooves of 50 µm periodicity may help in promoting hMSC adhesion and alignment, while reducing bacterial cell attachment.


Assuntos
Materiais Dentários , Lasers , Humanos , Materiais Dentários/química , Propriedades de Superfície , Teste de Materiais , Zircônio/química , Microscopia Eletrônica de Varredura , Staphylococcus aureus , Ítrio/química , Cerâmica/química
17.
Dent Mater ; 40(2): 198-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951752

RESUMO

OBJECTIVES: To investigate the 5-year intraoral evolution and kinetics of low-temperature degradation (LTD) of second-generation monolithic prostheses made of 3% molar yttrium-doped tetragonal zirconia polycrystal (3Y-TZP) and the influence of masticatory mechanical stresses and glaze layer on this evolution. METHODS: A total of 101 posterior tooth elements were included in this prospective clinical study, which comprised ex vivo LTD monitoring (at baseline, 6 months, 1 year, 2 years, 3 years, and 5 years) using Raman spectroscopy (n = 2640 monoclinic phase measurement points per evaluation time) and scanning electron microscopy (SEM). Four types of areas (1-2 mm2 surface, six on molars, and four on premolars) were analysed on each element surface: occlusal, axial, glazed, or unglazed. Raman mapping, high-resolution SEM, and focused ion beam-SEM were performed on selected samples. RESULTS: The dental prostheses developed a tetragonal-to-monoclinic transformation at the extreme surface of the material after six months in a buccal environment, and this process increased significantly over time. Over the five years of monitoring, the transformation developed nonuniformly with the presence of localised clusters of monoclinic grains. Tribological stresses generate grain pull-out from these clusters, which may raise questions regarding the release of 3Y-TZP nanoparticles into the body. The prosthesis fracture rate was 4.5% after 5 years. SIGNIFICANCE: LTD developed in vivo on the surfaces of 3Y-TZP dental prostheses and progressed slowly but significantly over time, up to 5 years investigation. However, the effects of aging on the failure rate recorded and of zirconia nanoparticles released into the body require further investigation.


Assuntos
Prótese Dentária , Zircônio , Temperatura , Estudos Prospectivos , Propriedades de Superfície , Zircônio/química , Ítrio/química , Teste de Materiais , Materiais Dentários/química , Cerâmica/química
18.
Dent Mater ; 40(2): 297-306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007319

RESUMO

OBJECTIVES: New bioactive materials were introduced to not only restore the lost dental hard tissue but also to release fluoride that inhibits demineralization and occurrence of secondary caries. The current study thus aims to assess Fluoride release as well as the mechanical and physical properties of two new commercially available bioactive restorative materials. METHODS: Two materials, Cention® Forte (CF) (Ivoclar Vivadent), Surefil one™ (SO) (Denstply Sirona), were evaluated in terms of fracture toughness (FT), flexural strength (FS), flexural modulus (FM) (ISO 4049), compressive strength (CS), and Vickers hardness (VH). In addition, thermogravimetric analysis (TGA) was performed, as well as pH measurements and quantification of Fluoride release after immersion in distilled water at times of 0, 7, 14 and 21 days. The sealing ability was evaluated using silver nitrate dye penetration on natural teeth. Finally, Energy-Dispersive X-Ray Spectroscopy (EDX) was used to investigate the surface composition of the two studied material surfaces. The data were statistically analyzed using Independent T-Tests; the chosen significance level was α = 0.05. RESULTS: CF had significantly higher FT values compared to SO (p = 0.001). Also the FS results showed that CF had significantly higher values (90.11 MPa), followed by SO (22.15 MPa). The CS values showed the same order with significantly higher values for CF (231.79 MPa). While the FM and VH showed the reverse order with SO having significantly higher values than CF. pH measurements showed that CF evolved towards significantly higher pH values after 3 weeks in distilled water, while thermal properties showed more stability and higher resistance to degradation for CF compared to SO. The silver nitrate penetration results showed significantly better sealing ability for CF compared to the self-adhesive SO. Finally, EDX surface analysis results were consistent with the release profiles and confirmed the composition of the two tested materials. SIGNIFICANCE: Both materials, demonstrated enhanced Fluoride release ability, and hence good remineralisation potential in vitro that could prevent recurrent carious lesions in vivo. The composition based on acrylic polymerization showed better mechanical resistance to bending and fracture, and higher sealing ability than those based on acid base reaction.


Assuntos
Fluoretos , Nitrato de Prata , Dureza , Materiais Dentários/química , Resinas Compostas/química , Água , Teste de Materiais , Propriedades de Superfície
19.
Dent Mater ; 40(1): 111-117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926607

RESUMO

OBJECTIVES: This study aimed to assess the effect of airborne particle abrasion (APA) and regeneration firing (RF) on the subsurface damage and strength distribution of 3D-printed 3Y-TZP and 5Y-PSZ zirconia parts for dental applications. METHODS: Disc-shaped specimens were prepared using vat photopolymerization (VPP) technology from 3Y and 5Y zirconia ceramics, followed by thermal debinding and sintering. APA treatment with 50 µm Al2O3 particles and RF at 1000 °C for 15 min were applied. Microstructural analysis was conducted using FIB-SEM, and XRD analysis determined crystalline phase content. Biaxial flexural strength was measured using the ball on three balls method and analyzed with Weibull statistics. ANOVA and Tukey HSD test were employed to compare strength differences between groups. RESULTS: APA treatment increased the flexural strength of the 3Y specimens but decreased it for the 5Y specimens. RF treatment reversed the effect, restoring the strength to as-sintered levels for both materials. APA-treated 3Y specimens exhibited characteristic strength values above 1400 MPa, attributed to phase-transformation toughening. As sintered 5Y specimens showed strength values above 600 MPa. APA treatment increased the Weibull modulus of the 5Y specimens, indicating a narrower defect size distribution. SIGNIFICANCE: The study demonstrates that the impact of APA and RF treatments on the mechanical properties and reliability of VPP-fabricated 3Y-TZP and 5Y-PSZ ceramics is comparable to conventionally prepared zirconia. VPP technology for 3D printing provides a viable approach for future manufacturing of dental restorations with potential clinical applications.


Assuntos
Cerâmica , Materiais Dentários , Materiais Dentários/química , Teste de Materiais , Reprodutibilidade dos Testes , Propriedades de Superfície , Zircônio/química , Impressão Tridimensional , Regeneração , Ítrio/química
20.
Dent Mater ; 40(1): 102-110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37919112

RESUMO

OBJECTIVES: This study aimed to enhance the bond strength between Biodentine™ (BD), a bioactive tricalcium silicate (C3S) based material, and resin composite through various surface treatments. METHODOLOGY: BD samples were immersed in either double distilled water or Hank's Balanced Salt Solution and analyzed using X-ray Diffraction (XRD). Shear bond strength (SBS) evaluations of BD were performed using Prime & Bond™ NT (PNT), Single Bond Universal (SBU), Xeno V (Xeno), and glass ionomer cement (GIC) following various etching durations (0 s/ 15 s/ 30 s/ 60 s with 37.5% phosphoric acid). Two primers, RelyX™ Ceramic Primer (RCP) and Monobond ™ Plus (MBP), were chosen to prime BD for SBS enhancement. Fractography and bonding interfaces were examined with energy dispersive X-ray spectroscopy (EDS)/ scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). RESULTS: XRD confirmed BD's main compositions as C3S, Ca(OH)2, CaCO3 and ZrO2 after 14 days crystal maturation. Etched BD did not improve SBS. GIC exhibited the lowest SBS (p < 0.05) among all adhesives, regardless of the etching mode (all < 1 MPa). The highest SBS (17.5 ± 3.6 MPa, p < 0.05) was achieved when BD primed with MBP followed by SBU application. FTIR and EDS showed γ-MPTS and10-MDP within the MBP primer interacted with C3S and ZrO2 of BD, achieving enhanced SBS. Most specimens exhibited mixed or cohesive failure modes. Significance BD's subpar mechanical properties and texture may contribute to its poor adhesion to resin composite. Pretreating BD with MBP primer, followed by SBU adhesive is recommended for improving bond strength.


Assuntos
Colagem Dentária , Cimentos de Resina , Cimentos de Resina/química , Propriedades de Superfície , Materiais Dentários/química , Resinas Compostas/química , Cimentos de Ionômeros de Vidro , Resistência ao Cisalhamento , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...